Commit 9c013d5c authored by Thomas Brand's avatar Thomas Brand

Add oil import sector and solve new steady state.

parent d34b8238
......@@ -27,7 +27,8 @@ GCOYDBAR=0.232;
GIOYDBAR=0.039;
OTHGOVOYDBAR=0.064;
IOYDBAR=0.219;
CMOYDBAR=0.18;
CMZOYDBAR=0.16;
COOYDBAR=0.02;
IMOYDBAR=0.088;
TAUCBAR=0.206;
TAUNBAR=0.084;
......
......@@ -72,14 +72,20 @@ GX1
GX2
PIXSTAR
EXBW
MCM
CMZ
YMZ
CZ
PCZOP
CO
GAMMACO
OMEGACO
GAMMAPRCO
M
X
VM
VX
YM
YX
CM
IM
CD
ID
......
......@@ -3,20 +3,21 @@ iota, BETA_PDF, 0.5, 0.10;
epsk, BETA_PDF, 0.5, 0.10;
epsg, BETA_PDF, 0.5, 0.10;
h, BETA_PDF, 0.5, 0.10;
thetaw, BETA_PDF, 0.5, 0.2;
thetap, BETA_PDF, 0.5, 0.2;
thetax, BETA_PDF, 0.5, 0.2;
thetam, BETA_PDF, 0.5, 0.2;
thetaw, BETA_PDF, 0.5, 0.1;
thetap, BETA_PDF, 0.5, 0.1;
thetax, BETA_PDF, 0.5, 0.1;
thetam, BETA_PDF, 0.5, 0.1;
chiw, BETA_PDF, 0.5, 0.2;
chip, BETA_PDF, 0.5, 0.2;
chix, BETA_PDF, 0.5, 0.2;
chim, BETA_PDF, 0.5, 0.2;
omegam, BETA_PDF, 0.15, 0.05;
epsc, GAMMA_PDF, 1.5, 0.25;
epsco, GAMMA_PDF, 1.5, 0.25;
epsi, GAMMA_PDF, 1.5, 0.25;
epsw, GAMMA_PDF, 1.5, 0.25;
kappa, GAMMA_PDF, 4, 0.50;
gammac, GAMMA_PDF, 2.5, 1;
gammaco, GAMMA_PDF, 2.5, 1;
gammai, GAMMA_PDF, 2.5, 1;
gammapi, NORMAL_PDF, 1.7, 0.1;
gammay, BETA_PDF, 0.5, 0.2;
......
......@@ -11,7 +11,6 @@ chiw,0.665986 ;
chip,0.320819 ;
chix,0.313556 ;
chim,0.812732 ;
omegam,0.088522 ;
epsc,1.409484 ;
epsi,1.417517 ;
epsw,2.134332 ;
......
......@@ -10,6 +10,7 @@ XIX=1;
XIA=1;
GAMMAC=0;
GAMMACO=0;
GAMMAI=0;
GAMMAU=0;
COSTI=0;
......@@ -17,6 +18,7 @@ GAMMABW=0;
GAMMAB=0;
GAMMAX=0;
GAMMAPRC=0;
GAMMAPRCO=0;
GAMMAPRI=0;
EPS=EPSBAR;
......@@ -51,6 +53,7 @@ DELTAEX=1;
PWOPEX=1;
U=1;
OMEGAC=1;
OMEGACO=1;
OMEGAI=1;
PIC=PI;
......@@ -67,7 +70,6 @@ VM=1;
VP=1;
POILOPEX=1;
MCM=1;
PXOPEX=EPSX/(EPSX-1);
PMOP=EPSM/(EPSM-1);
......@@ -160,8 +162,10 @@ K = KOYDBAR*YD;
phi= phiOyd*YD;
I = IOYDBAR*YD;
IM = IMOYDBAR*YD;
CM = CMOYDBAR*YD;
M = IM+CM;
CMZ= CMZOYDBAR*YD;
CO = COOYDBAR*YD;
YMZ= CMZ+IM;
M = IM+CMZ+CO;
T = TOYDBAR*YD;
GC = GCOYDBAR*YD;
GI = GIOYDBAR*YD;
......@@ -172,24 +176,18 @@ we=weOn*N;
WSTAR = ((1-thetaw*Z^(EPSW-1))/(1-thetaw)*W^(1-EPSW))^(1/(1-EPSW));
fun = @(fa) [ ...
fa(2)-fa(1)^(-epsc)/(1-CM/fa(2)*(PMOP/fa(1))^(epsc))*(YD-ni*PIOP^epsi*I-VX*(PWOPEX/PXOPEX)*M-GI-GC-((mu*G*RK*Q*KP/(Z*PI))+bigtheta*(1-GAMMAN)*((Q*KP)/qkOn-weOn*(Q*KP)/qkOn)/GAMMAN)),...
fa(1)-((1-CM/fa(2)*(PMOP/fa(1))^(epsc))+(1-(1-CM/fa(2)*(PMOP/fa(1))^(epsc)))*PMOP^(1-epsc))^(1/(1-epsc))
];
[fasol, fval, exitflag] = fsolve(fun,[1,1], options);
if exitflag<1
disp('Fourth Newton failed!')
info = 1;
return
end
YX=(PMOP*YMZ+CO)/PXOPEX;
X=YX*VX;
CD=YD-(ni*(PIOP)^epsi*I+GC+GI+PIOP*tauo*GAMMAU*KP/(MU*Z)+X+(mu*G*RK*Q*KP/(Z*PI))+bigtheta*(1-GAMMAN)*(N-we)/GAMMAN);
nc=PMOP^(-epsc)/(CMZ/CD+PMOP^(-epsc));
PCZOP=(nc+(1-nc)*(PMOP/OMEGAC)^(1-epsc))^(1/(1-epsc));
CZ=(nc^(1/epsc)*CD^((epsc-1)/epsc)+(1-nc)^(1/epsc)*(CMZ*(1-GAMMAC))^((epsc-1)/epsc))^(epsc/(epsc-1));
PCOP=fasol(1);
C=fasol(2);
nco=PCZOP^epsco/(CO/CZ+PCZOP^epsco);
PCOP=(nco*PCZOP^(1-epsco)+(1-nco)*(POILOPEX/OMEGACO)^(1-epsco))^(1/(1-epsco));
C=(nco^(1/epsco)*CZ^((epsco-1)/epsco)+(1-nco)^(1/epsco)*(CO*(1-GAMMACO))^((epsco-1)/epsco))^(epsco/(epsco-1));
nc = (1-CM/C*(PMOP/PCOP)^(epsc));
CNR = ((1-TAUN-TAUWH)*W*LD+TNR)/((1+TAUC)*PCOP);
CR = (omega*CNR-C)/(omega-1);
......@@ -203,20 +201,10 @@ F2=EPSW*psi*(WSTAR/W)^(EPSW*(-1-vartheta))*LD^(1+vartheta)/(1-beta*thetaw*Z^(EPS
TR = (T-omega*TNR)/(1-omega);
VW=(1-thetaw)*(WSTAR/W)^(-EPSW)/(1-thetaw*Z^EPSW);
N=(Q*KP)/qkOn;
we=weOn*N;
YX=M*PWOPEX/PXOPEX;
CD=nc*PCOP^epsc*C;
ID=ni*PIOP^epsi*I;
CM=CD*(1-nc)/nc*(PMOP)^(-epsc);
IM=ID*(1-ni)/ni*(PMOP)^(-epsi);
Y=VP*YD;
L=VW*LD;
X=YX*VX;
YM=CM+IM;
YW=(PXOPEX/PWOPEX)^epsw*YX;
TAULS = -((B-(GCOYDBAR+GIOYDBAR+OTHGOVOYDBAR+R*B/(PI*Z)-(RENTK-Q*delta)*tauk*KP/(YD*Z*MU)-(TAUN+TAUWH+TAUWF)*W*LD/YD-TAUC*PCOP*C/YD+TOYDBAR))*YD);
......@@ -225,8 +213,8 @@ TAULS = -((B-(GCOYDBAR+GIOYDBAR+OTHGOVOYDBAR+R*B/(PI*Z)-(RENTK-Q*delta)*tauk*KP/
%F2=psi*(WSTAR/W)^(EPSW*(-1-vartheta))*LD^(1+vartheta)/(1-beta*thetaw*Z^(EPSW*(1+vartheta)));
G1=(EPS-1)*LAMBDA*YD/(1-beta*thetap*PI);
G2=EPS*LAMBDA*MC*YD/(1-beta*thetap*PI);
GM1=LAMBDA*PWOPEX/PMOP*YM/(1-beta*thetam);
GM2=LAMBDA*PIMSTAR*YM/(1-beta*thetam);
GM1=LAMBDA*PWOPEX/PMOP*YMZ/(1-beta*thetam);
GM2=LAMBDA*PIMSTAR*YMZ/(1-beta*thetam);
GX1=LAMBDA/PXOPEX*YX/(1-beta*thetax);
GX2=LAMBDA*PIXSTAR*YX/(1-beta*thetax);
......@@ -242,11 +230,11 @@ BALGDP = REVGDP - TOTGOVGDP;
PRIMBALGDP = REVGDP - GOVGDP;
YDOYBAR=Y/YD;
CROYBAR=(1-omega)*CR/YD;
CNROYBAR=omega*CNR/YD;
IOYBAR=I/YD;
MOYBAR=M/YD;
XOYBAR=X/YD;
CROYBAR=(1-omega)*PCOP*CR/YD;
CNROYBAR=omega*PCOP*CNR/YD;
IOYBAR=PIOP*I/YD;
MOYBAR=PMOP*M/YD;
XOYBAR=PXOPEX*X/YD;
EXBWOYBAR=EXBW/YD;
BOYBAR=B*YD/YD;
REVOYBAR=REVGDP;
......
......@@ -88,13 +88,11 @@ G1=G2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Optimal sticky prices for imported goods
GM1=LAMBDA*MCM/PMOP*YM+beta*thetam*(PIM^chim*PIBAR^(1-chim)/PIM(+1))^(-EPSM(+1))*GM1(+1);
GM2=LAMBDA*PIMSTAR*YM+beta*thetam*(PIM^chim*PIBAR^(1-chim)/PIM(+1))^(1-EPSM(+1))*(PIMSTAR/PIMSTAR(+1))*GM2(+1);
GM1=LAMBDA*PWOPEX/PMOP*YMZ+beta*thetam*(PIM^chim*PIBAR^(1-chim)/PIM(+1))^(-EPSM(+1))*GM1(+1);
GM2=LAMBDA*PIMSTAR*YMZ+beta*thetam*(PIM^chim*PIBAR^(1-chim)/PIM(+1))^(1-EPSM(+1))*(PIMSTAR/PIMSTAR(+1))*GM2(+1);
EPSM*GM1=(EPSM-1)*GM2;
% Price dynamics for imported goods
1=thetam*(PIM(-1)^chim*PIBAR^(1-chim)/PIM)^(1-EPSM)+(1-thetam)*PIMSTAR^(1-EPSM);
% Marginal costs for import producters
MCM=POILOPEX^omegam*PWOPEX^(1-omegam);
% Optimal sticky prices for exported goods
GX1=LAMBDA*YX/PXOPEX+beta*thetax*(PIX^chix*PIBAR^(1-chix)/PIX(+1))^(-EPSX(+1))*GX1(+1);
GX2=LAMBDA*PIXSTAR*YX+beta*thetax*(PIX^chix*PIBAR^(1-chix)/PIX(+1))^(1-EPSX(+1))*(PIXSTAR/PIXSTAR(+1))*GX2(+1);
......@@ -106,25 +104,38 @@ EPSX*GX1=(EPSX-1)*GX2;
% FINAL GOOD PRODUCERS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Consumption goods
C=(nc^(1/epsc)*CD^((epsc-1)/epsc)+(1-nc)^(1/epsc)*(CM*(1-GAMMAC))^((epsc-1)/epsc))^(epsc/(epsc-1));
% Consumption goods adjustment costs
GAMMAC=gammac/2*(XIM^(-1/gammac)*(CM/C)/(CM(-1)/C(-1))-1)^2;
% Final consumption goods OK
C=(nco^(1/epsco)*CZ^((epsco-1)/epsco)+(1-nco)^(1/epsco)*(CO*(1-GAMMACO))^((epsco-1)/epsco))^(epsco/(epsco-1));
% Consumption goods adjustment costs OK
GAMMACO=gammaco/2*(XIM^(-1/gammaco)*(CO/C)/(CO(-1)/C(-1))-1)^2;
% Imported consumption as a share of domestic consumption (FOC) OK
CO/CZ=(1-nco)/nco*(POILOPEX/(PCZOP*OMEGACO))^(-epsco)*1/(1-GAMMACO);
% Relative price of consumption goods OK
PCOP=(nco*PCZOP^(1-epsco)+(1-nco)*(POILOPEX/OMEGACO)^(1-epsco))^(1/(1-epsco));
% Adjustment costs for the share of domestic consumption
OMEGACO=1-GAMMACO-GAMMAPRCO*CO;
GAMMAPRCO=gammaco*(XIM^(-1/gammaco)*(CO/C)/(CO(-1)/C(-1))-1)*(XIM^(-1/gammaco)*1/C/(CO(-1)/C(-1)));
% Consumption non-oil goods OK
CZ=(nc^(1/epsc)*CD^((epsc-1)/epsc)+(1-nc)^(1/epsc)*(CMZ*(1-GAMMAC))^((epsc-1)/epsc))^(epsc/(epsc-1));
% Consumption non-oil goods adjustment costs OK
GAMMAC=gammac/2*(XIM^(-1/gammac)*(CMZ/CZ)/(CMZ(-1)/CZ(-1))-1)^2;
% Imported non-oil consumption as a share of domestic consumption (FOC) OK
CMZ/CD=(1-nc)/nc*(PMOP/OMEGAC)^(-epsc)*1/(1-GAMMAC);
% Relative price of non-oil consumption goods OK
PCZOP=(nc+(1-nc)*(PMOP/OMEGAC)^(1-epsc))^(1/(1-epsc));
% Adjustment costs for the share of non-oil consumption
OMEGAC=1-GAMMAC-GAMMAPRC*CMZ;
GAMMAPRC=gammac*(XIM^(-1/gammac)*(CMZ/CZ)/(CMZ(-1)/CZ(-1))-1)*(XIM^(-1/gammac)*1/CZ/(CMZ(-1)/CZ(-1)));
% Investment goods
I=(ni^(1/epsi)*ID^((epsi-1)/epsi)+(1-ni)^(1/epsi)*(IM*(1-GAMMAI))^((epsi-1)/epsi))^(epsi/(epsi-1));
% Investment goods adjustment costs
GAMMAI=gammai/2*(XIM^(-1/gammai)*(IM/I)/(IM(-1)/I(-1))-1)^2;
% Imported consumption as a share of domestic consumption (FOC)
CM/CD=(1-nc)/nc*(PMOP/OMEGAC)^(-epsc)*1/(1-GAMMAC);
% Imported investment as a share of domestic investment (FOC)
IM/ID=(1-ni)/ni*(PMOP/OMEGAI)^(-epsi)*1/(1-GAMMAI);
% Relative price of consumption goods
PCOP=(nc+(1-nc)*(PMOP/OMEGAC)^(1-epsc))^(1/(1-epsc));
% Relative Price of investment goods
PIOP=(ni+(1-ni)*(PMOP/OMEGAI)^(1-epsi))^(1/(1-epsi));
% Adjustment costs for the share of domestic consumption
OMEGAC=1-GAMMAC-GAMMAPRC*CM;
GAMMAPRC=gammac*(XIM^(-1/gammac)*(CM/C)/(CM(-1)/C(-1))-1)*(XIM^(-1/gammac)*1/C/(CM(-1)/C(-1)));
% Adjustment costs for the share of domestic investment
OMEGAI=1-GAMMAI-GAMMAPRI*IM;
GAMMAPRI=gammai*(XIM^(-1/gammai)*(IM/I)/(IM(-1)/I(-1))-1)*(XIM^(-1/gammai)*1/I/(IM(-1)/I(-1)));
......@@ -157,15 +168,15 @@ L=VW*LD;
% Wage dispersion
VW=thetaw*(W(-1)*PI(-1)^chiw*PIBAR^(1-chiw)/(W*Z*PI))^(-EPSW)*VW(-1)+(1-thetaw)*(WSTAR/W)^(-EPSW);
% Domestic goods market equilibrium
YD=nc*(PCOP)^epsc*C+ni*(PIOP)^epsi*I+GC+GI+PIOP*tauo*GAMMAU*KP(-1)/(MU*Z)+X+(mu*G*RK*Q(-1)*KP(-1)/(Z*PI))+bigtheta*(1-GAMMAN)*(N-we)/GAMMAN;
YD=CD+ni*(PIOP)^epsi*I+GC+GI+PIOP*tauo*GAMMAU*KP(-1)/(MU*Z)+X+(mu*G*RK*Q(-1)*KP(-1)/(Z*PI))+bigtheta*(1-GAMMAN)*(N-we)/GAMMAN;
% Effective production
Y=VP*YD;
% Price dispersion for import goods
VP=thetap*(PI(-1)^chip*PIBAR^(1-chip)/PI)^(-EPS)*VP(-1)+(1-thetap)*PISTAR^(-EPS);
% Production of import producers
YM=CM+IM;
% Import index
M=VM*YM;
YMZ=CMZ+IM;
% Import total
M=VM*YMZ+CO;
% Import price dispersion
VM=thetam*(PIM(-1)^chim*PIBAR^(1-chim)/PIM)^(-EPSM)*VM(-1)+(1-thetam)*PIMSTAR^(-EPSM);
% Export demand
......@@ -177,7 +188,7 @@ VX=thetax*(PIX(-1)^chix*PIBAR^(1-chix)/PIX)^(-EPSX)*VX(-1)+(1-thetax)*PIXSTAR^(-
% Net foreign assets
EXBW=(1-GAMMABW)*RW*EXBW(-1)*DELTAEX/(Z*PI)+TB;
% Trade balance
TB=PXOPEX*X-PWOPEX*M;
TB=PXOPEX*X-(PMOP*VM*YMZ+POILOPEX*CO);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% INFLATION RATES
......
......@@ -16,7 +16,8 @@ GCOYDBAR
GIOYDBAR
OTHGOVOYDBAR
IOYDBAR
CMOYDBAR
COOYDBAR
CMZOYDBAR
IMOYDBAR
TAUCBAR
TAUNBAR
......@@ -43,6 +44,7 @@ phi
phi1
psi
nc
nco
ni
nk
......@@ -60,12 +62,13 @@ chiw $\chi_w$ (long_name='Wage indexing', measure='economic param')
chip $\chi_p$ (long_name='Domestic price indexing', measure='economic param')
chix $\chi_x$ (long_name='Export price indexing', measure='economic param')
chim $\chi_m$ (long_name='Import price indexing', measure='economic param')
omegam $\omega_m$ (long_name='Oil import share', measure='economic param')
epsc $\epsilon_c$ (long_name='Elasticity of substitution between domestic and foreign consumption', measure='economic param')
epsi $\epsilon_i$ (long_name='Elasticity of substitution between domestic and foreign investment', measure='economic param')
epsco $\epsilon_{co}$ (long_name='Elasticity of substitution between consumption of oil and non-oil goods', measure='economic param')
epsw $\epsilon_w$ (long_name='Price elasticity of exports', measure='economic param')
kappa $\kappa$ (long_name='Adjustment cost in investment', measure='economic param')
gammac $\gamma c$ (long_name='Adjustment cost in imported consumption', measure='economic param')
gammac $\gamma c$ (long_name='Adjustment cost in imported non-oil consumption', measure='economic param')
gammaco $\gamma co$ (long_name='Adjustment cost in imported oil consumption', measure='economic param')
gammai $\gamma i$ (long_name='Adjustement cost in imported investment', measure='economic param')
gammapi $\gamma_{\pi}$ (long_name='Monetary policy weight on inflation', measure='economic param')
gammay $\gamma_{y}$ (long_name='Monetary policy weight on output growth', measure='economic param')
......
......@@ -11,12 +11,13 @@ chiw = 0.665986;
chip = 0.320819;
chix = 0.313556;
chim = 0.812732;
omegam = 0.088522;
epsc = 1.409484;
epsco = 0.3;
epsi = 1.417517;
epsw = 2.134332;
kappa = 5.550699;
gammac = 1.523070;
gammaco = 2.5;
gammai = 1.602370;
gammapi = 1.696654;
gammay = 0.859251;
......
......@@ -31,18 +31,24 @@ estimated_params;
@#include "estimated-parameters.inc"
end;
estimated_params_init;
@#include "initial-values.inc"
end;
%estimated_params_init;
%@#include "initial-values.inc"
%end;
options_.TeX = 1;
write_latex_prior_table;
write_latex_dynamic_model;
write_latex_static_model;
estimation(presample=12, lyapunov=doubling, mode_compute=4, mh_replic=200, kalman_algo=2, consider_only_observed, mode_check,forecast=40);
estimation(presample=16, lyapunov=doubling, mode_compute=0, mh_replic=2000, kalman_algo=2, consider_only_observed,mode_file=mars_mode,mode_check,prior_trunc=0);
rawdataset = struct(dataset_);
rawdatatime = struct(rawdataset.dates);
save rawdataset.mat rawdataset;
save rawdatatime.mat rawdatatime;
%rawdataset = struct(dataset_);
%rawdatatime = struct(rawdataset.dates);
%save rawdataset.mat rawdataset;
%save rawdatatime.mat rawdatatime;
shock_decomposition GDP_OBS;
stoch_simul(order=1,irf=40) YD C I LD W PI R B GC;
collect_latex_files;
......@@ -3,23 +3,107 @@
@#include "parameters.inc"
@#include "endogenous-variables.inc"
var
YDOYBAR (measure='%', long_name='PIB')
CROYBAR (measure='%', long_name='Conso ricardien')
CNROYBAR (measure='%', long_name='Conso non-ricardien')
IOYBAR (measure='%', long_name='Investissement')
MOYBAR (measure='%', long_name='Importations')
XOYBAR (measure='%', long_name='Exportations')
EXBWOYBAR (measure='%', long_name='Position exterieure nette')
BOYBAR (measure='%', long_name='Dette publique')
REVOYBAR (measure='%', long_name='Recettes publiques')
TOTGOVOYBAR (measure='%', long_name='Depenses publiques')
BALOYBAR (measure='%', long_name='Solde budgetaire')
TBOYBAR (measure='%', long_name='Solde courant')
R4 (measure='%', long_name='Taux interet nominal')
PI4 (measure='%', long_name='Inflation')
WOWBAR (measure='%', long_name='Salaires')
LDOLDBAR (measure='%', long_name='Heures travaillees')
YWOYWBAR (measure='%', long_name='Demande mondiale')
POILOPEXOPOILBAR (measure='%', long_name='Prix du petrole')
;
@#include "exogenous-variables.inc"
@#include "calibration.inc"
@#include "values-for-estimated-parameters.inc"
@#include "values-for-estimated-parameters2.inc"
rhogc=0.5;
rhogi=0.5;
rhot=0.5;
rhoothgov=0.5;
rhotauc=0.5;
rhotauwh=0.5;
rhotauwf=0.5;
siggi=1;
siggc=1;
sigt=1;
sigtauc=-1;
sigtauwh=-1;
sigtauwf=-1;
sigr=1/400/30;
%rhogb = 0;
%rhogy = 0;
%rhoty = 0;
%thetap = 0.75;
%thetax = 0.75;
%shfr=0.9;
%epsc=0.1;
model;
@#include "model.inc"
YDOYBAR=YD/steady_state(YD);
CROYBAR=(1-omega)*PCOP*CR/steady_state(YD);
CNROYBAR=omega*PCOP*CNR/steady_state(YD);
IOYBAR=PIOP*I/steady_state(YD);
MOYBAR=PMOP*M/steady_state(YD);
XOYBAR=PXOPEX*X/steady_state(YD);
EXBWOYBAR=EXBW/steady_state(YD);
BOYBAR=B*YD/steady_state(YD);
REVOYBAR=REVGDP*YD/steady_state(YD);
TOTGOVOYBAR=TOTGOVGDP*YD/steady_state(YD);
BALOYBAR=BALGDP*YD/steady_state(YD);
TBOYBAR=TB/steady_state(YD);
R4=R^4;
PI4=PI^4;
WOWBAR=W/steady_state(W);
LDOLDBAR=LD/steady_state(LD);
YWOYWBAR=PWOPEX*YW/steady_state(YW);
POILOPEXOPOILBAR=POILOPEX/steady_state(POILOPEX);
end;
install_steadystate_file('../common/');
steady;
@#include "calibrated-shocks.inc"
check;
%@#include "calibrated-shocks.inc"
shocks;
var TAUC_EXO; stderr 1/8;
%var TAUN_EXO; stderr 1;
var TAUWH_EXO; stderr 0.34;
var TAUWF_EXO; stderr 0.085;
%var TAULS_EXO; stderr 1;
%var A_EXO; stderr 1;
var XIA_EXO; stderr 1;
%var MU_EXO; stderr 1;
var ZETAI_EXO; stderr 1;
%var EPS_EXO; stderr 1;
%var EPSW_EXO; stderr 1;
var R_EXO; stderr 1;
%var D_EXO; stderr 1;
%var XIB_EXO; stderr 1;
var GC_EXO; stderr 1/22;%log((0.01*YD+GC)/GC);
var GI_EXO; stderr 1/3.8;%log((0.01*YD+GI)/GI);
var T_EXO; stderr 1/16;%log((0.01*YD+T)/T);
%var OTHGOV_EXO; stderr 1;
var SIGMA_EXO; stderr 1;
%var GAMMAN_EXO; stderr 1;
var YW_EXO; stderr 1/1.7;
var POIL_EXO; stderr 1/1.5;
%var YDZE_EXO; stderr 1;
%var PIZE_EXO; stderr 1;
end;
stoch_simul(order=1,irf=100) YD C I LD W PI R REFF B GC EXBW M X RW GAMMABW MC GAMMAB;
stoch_simul(order=1,irf=40,nograph);% Y CR XIB I PI R B TOTGOVGDP GOVGDP;
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment